An Algorithm for Data-Driven Bandwidth Selection

نویسنده

  • Dorin Comaniciu
چکیده

The analysis of a feature space that exhibits multiscale patterns often requires kernel estimation techniques with locally adaptive bandwidths, such as the variable-bandwidth mean shift. Proper selection of the kernel bandwidth is, however, a critical step for superior space analysis and partitioning. This paper presents a mean shift-based approach for local bandwidth selection in the multimodal, multivariate case. Our method is based on a fundamental property of normal distributions regarding the bias of the normalized density gradient. We demonstrate that, within the large sample approximation, the local covariance is estimated by the matrix that maximizes the magnitude of the normalized mean shift vector. Using this property, we develop a reliable algorithm which takes into account the stability of local bandwidth estimates across scales. The validity of our theoretical results is proven in various space partitioning experiments involving the variable-bandwidth mean shift.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of the Compact Ultra-Wideband (UWB) Antenna Bandwidth Optimization Using Particle Swarm Optimization Algorithm

In this paper a particle swarm optimization (PSO) algorithm is presented to design a compact stepped triangle shape antenna in order to obtain the proper UWB bandwidth as defined by FCC. By changing the various cavity dimensions of the antenna, data to develop PSO program in MATLAB is achieved. The results obtained from the PSO algorithm are applied to the antenna design to fine-tune the bandwi...

متن کامل

An iterative plug-in algorithm for decomposing seasonal time series using the Berlin Method

We propose a fast data-driven procedure for decomposing seasonal time series using the Berlin Method, the software used by the German Federal Statistical Office in this context. Formula of the asymptotic optimal bandwidth hA is obtained. Methods for estimating the unknowns in hA are proposed. The algorithm is developed by adapting the well known iterative plug-in idea to time series decompositi...

متن کامل

Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions

Li & Racine (2008) consider the nonparametric estimation of conditional cumulative distribution functions (CDF) in the presence of discrete and continuous covariates along with the associated conditional quantile function. However, they did not propose an optimal data-driven method of bandwidth selection and left this important problem as an ‘open question’. In this paper we propose an automati...

متن کامل

A Bayesian Approach to Bandwidth Selection for Multivariate Kernel Regression with an Application to State- Price Density Estimation

Multivariate kernel regression is an important tool for investigating the relationship between a response and a set of explanatory variables. It is generally accepted that the performance of a kernel regression estimator largely depends on the choice of bandwidth rather than the kernel function. This nonparametric technique has been employed in a number of empirical studies including the state-...

متن کامل

Comparison and evaluation of the performance of data-driven models for estimating suspended sediment downstream of Doroodzan Dam

Dams control most of the sediment entering the reservoir by creating static environments. However, sediment leaving the dam depends on various factors such as dam management method, inlet sediment, water height in the reservoir, the shape of the reservoir, and discharge flow. In this research, the amount of suspended sediment of Doroodzan Dam based on a statistical period of 25 years has been i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2003